Large Non-Stationary Noisy Covariance Matrices: A Cross-Validation Approach
نویسندگان
چکیده
We introduce a novel covariance estimator that exploits the heteroskedastic nature of financial time series by employing exponential weighted moving averages and shrinking in-sample eigenvalues through cross-validation. Our is model-agnostic in we make no assumptions on distribution random entries matrix or structure matrix. Additionally, show how Random Matrix Theory can provide guidance for automatic tuning hyperparameter which characterizes scale dynamics estimator. By attenuating noise from both cross-sectional time-series dimensions, empirically demonstrate superiority our over competing estimators are based exponentially-weighted uniformly-weighted matrices.
منابع مشابه
Large Dynamic Covariance Matrices
Second moments of asset returns are important for risk management and portfolio selection. The problem of estimating second moments can be approached from two angles: time series and the cross-section. In time series, the key is to account for conditional heteroskedasticity; a favored model is Dynamic Conditional Correlation (DCC), derived from the ARCH/GARCH family started by Engle (1982). In ...
متن کاملNon-stationary Covariance Function
Analyzing datasets, such as sea-level records, pose a challenging statistical problem for reasons including non-stationarity, non-uniformly smooth spatial boundaries, and sparsity in the data. In this paper, we propose a framework to estimate the non-stationary covariance function by employing intrinsic statistics on the local covariates. These local covariates represent the underlying local co...
متن کاملEstimation of Large Covariance Matrices
This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (logp)/n→ 0, and obtain explicit rates. The results are uniform over some fairly natural well-conditioned fam...
متن کاملHeteroskedasticity-Autocorrelation Robust Covariance Estimation Under Non-stationary Covariance Processes
The need to estimate variance-covariance matrix in a time series regression arises often in economic applications involving macroeconomic or finance data. In this paper, we study the behavior of two most popular covariance matrix estimators, namely the Kiefer, Vogelsang and Bunzel kernel estimator without truncation (Kiefer, Vogelsang and Bunzel 2000, KVB thereafter) and standard consistent ker...
متن کاملCross Entropy Approximation of Structured Covariance Matrices
We apply two variations of the principle of Minimum Cross Entropy (the Kullback information measure) to fit parameterized probability density models to observed data densities. For an array beamforming problem with P incident narrowband point sources, N > P sensors, and colored noise, both approaches yield eigenvector fitting methods similar to that of the MUSIC algorithm[1]. Furthermore, the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Science Research Network
سال: 2021
ISSN: ['1556-5068']
DOI: https://doi.org/10.2139/ssrn.3745692